
MATHEMATICS OF COMPUTATION 
VOLUME 45, NUMBER 172 
OCTOBER 1985, PAGES 319-327 

Finite Difference Approximations 
of Generalized Solutions 

By Endre SiOli, Bosko Jovanovic and Lav Ivanovic 

Abstract. We consider finite difference schemes approximating the Dirichlet problem for the 
Poisson equation. We provide scales of error estimates in discrete Sobolev-like norms 
assuming that the generalized solution belongs to a nonnegative order Sobolev space. 

1. Introduction. Recently, there have been many theoretical advances in construct- 
ing finite difference schemes approximating boundary value problems for partial 

differential equations with generalized solutions belonging to Sobolev spaces. For 

example, Lazarov [4] presents a finite difference approximation of the Dirichlet 
problem for the Poisson equation with a generalized solution belonging to the 

Sobolev space Wk,2 of integer order k = 2, 3 using the so-called Bramble-Hilbert 
lemma [1]. 

Unfortunately, the Bramble-Hilbert lemma is stated only for integer-order Sobo- 
lev spaces. Recently, Dupont and Scott [3] gave a constructive proof of this lemma 
using an averaged Taylor series and extended it to fractional- order Sobolev spaces. 

In this paper a basic framework is given which allows the application of the finite 
difference method in order to approximate generalized solutions belonging to 
Sobolev spaces W',P. 0 < s < 4, 1 < p < oc (Theorems 1 and 3). Proofs are based 
on the Dupont-Scott approximation theorem. 

We shall prove a discrete interpolation inequality (Lemma 2) which will enable us 
to derive several scales of error estimates (Theorems 2 and 4). 

For simplicity, the analysis in this paper only deals with the Dirichlet problem for 

the Poisson equation in rectangular domains. Extensions to other elliptic boundary 
value problems in less special domains or to nonlinear problems are possible. 

2. Preliminaries and Notations. Let a? be an open rectangle in two-dimensional 
Euclidean space 12 and 1 < p < xc. Throughout the paper W'sP(YV) is the Sobolev 

space of order s > 0 (cf. [8]) equipped with the Sobolev norm 
S 

||U|| 5p .5;/ = E lUI p .S- 
k=O 

with 

luck, p, v- L 1D~ ILP(aV) 
lal=k 
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if s is integer, and 

llul!PSP,= I lu~lP~s 
UPpf 

if s = [s] + a, with [s]= integral part of s, 0 < a < 1 and 

P jIDou(x) - Dau(y)IP |[ Ip EIX A | D U ( X )yDI a (? Y )P dx dy. 

N will stand for the set of nonnegative integers. Pl(V) will denote the set of 
polynomials in two variables of degree < I over the sets , for any / E N. 

The next lemma is an easy consequence of the Dupont-Scott approximation 
theorem [3] (the case a = 1, p = 2 follows from the Bramble-Hilbert lemma [1]). 

LEMMA 1. Suppose s = / + a, where 0 < a < 1 and / E N. Let q be a bounded 
linear functional on WS'P(,/) such that P'( 5) C kernel('q). There exists a positive 
constant C (depending on jV, s, p) such that for any u E Ws P( V) 

17n(U)l <-cIlul",_V 

Remark 1. Lemma 1 also follows from the Tartar lemma [2]. 
Remark 2. If q7(u) = 0 for some polynomials of degree > 1, then an analogous 

estimate is valid, containing only a part of the seminorm Iul 1P (cf. Lazarov [4], 
s E N, p = 2). 

Let .9'((9) denote the space of distributions on (9, for any open set ( C R2. Define 
the differential operator A on 9'((9) by 

a2u a2u 
Au= + 

ax12 ax2' 

Let us assume, for the sake of simplicity, that Q is an open rectangle in R2 with 
boundary ad , and consider the Dirichlet problem 

(1) Au= -f in 2, 
(2) u = O onaQ2. 

By changing variables, we may suppose, without loss of generality, that the 
rectangle is 

= (O, r) x(o, ). 

Throughout the paper we assume that (1) has a unique generalized (distributional) 
solution in Ws P(Q), 0 < s < 4, 1 < p < ox, satisfying (2) in the sense of trace 
theorems [5], [8]. 

3. Mollifiers. Consider the function 

S^(X) = x/2 / , x#O. 
x = 0, 

with v E N. By the Paley-Wiener-Schwartz theorem [7] there exists a distribution 9, 
with compact support and with a Fourier transform equal to S.. 
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Remark 3. An easy argument shows that 0O is the Dirac distribution. For v > 1, 08, 
is a regular distribution. For example, 

0 (x) = J XE (-1, 2), 

x = (-1,1), 

t -(X +22, X E (2E ] 

3 _X2 X [- 222] 
03 (X) - 3)2 X E [+, 2+), 

t0 X Z - +2 

Let v = (hui, v2), vl v E N, x = (x1, x2) E 1R2, 0,, the tensor product of distribu- 
tions @l and tV2' G3 a distribution defined by 

03 ( )X 
a 2 2 t h>O 

and u E 9 '( RI2). The operator ?X given by 

2T u2= u*2 

will be called mollifier. 
Remark 4. Since Gv is a distribution with compact support, the convolution u * G 

is well defined. 
For h > 0Oandv' = (v1, v2), we set 

Let u E ('(Qi2) and u*2 E N'(R2) be any extension of u. tjn u will denote the 

restriction of Tdu * to 
Remark 5. Let us observe that oru is well defined since it does not depend on uby 
For simplicity, we shall write l1V2 instead ofl 

4. Construction of Difference Schemes. Pick a nonnegative integer Nv> 2 and let 
h = w/N. We define the following grids 

v= { - (X(1), X~/2)) E R12: Xh"i - i< * h, 7i < x, j = 1, 21} 

Let == -Q and u * E= -9( 2= be any exenio ofu ildnt h 

hehUYh, y y o ({?,T } x(, Tt)), 

y.4 =Yh r((O,7T) x{O,7T }), 

Yb = Yh rl({o} X (O,7) U(O,7T) X {o}), 
W h W h UYh- 

For v, a function of discrete arguments, defined on Rna, set 

(V2 v)(x =v(X + eRh) -<v(x) j 2 
( 1v)( h j= 1,2, 

Yh 'Yh ~ ~ hj=,2 
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with e1 = (1, 0), e2 = (0, 1), and define 

AhV = V1V1v + V2V2v. 

A function v of discrete arguments defined on o, (or on ah and equal to zero on 
Yh) is said to belong to LP(Wh), 1 < p < x, if there exists a positive constant M, 
such that 

(/p 

IIVIph= kh 
2 

Iv(X)I < M, 
X E Wh 

uniformly in h. 
Remark 6. If v is defined on wh (or on 3h and equal to zero on Yb \ Y,3) the norm 

* lip h is replaced by 
1/p 

1[O11psh= (h2 E 0(X)l ) 

Let us suppose that v is defined on wh (or on bh and equal to zero on Yh). The 
discrete Fourier transform b of v is given by 

k = 
2 

hv(x) sin(k1 x1) sin(k2 x2), k = (kl, k2), x = (xl, x2). 
X E Wh 

The inverse discrete Fourier transform of v is defined by 

V(X) = (-) E Okvsin(kl * x1) sin(k2 * X2), 
7Tk E- Kh 

with Kh = {k = (kl, k2) e N X N: 0 <kjh <7Tj = 1,2}. 
A function v, defined on C0h (or on (0h and equal to zero on Yh), is said to belong to 

Wrp P(h), - x < r < o, 1 < p < so, if there exists a function V E LP(ch) such 
that 

V(X) = 
(IrhV)(X) =(I + 1k1 )rVk. 

By definition, we set 

IIVI1rp,h = II VIpb. 

We now turn to a generalization of a discrete interpolation inequality established 
by Mokin [6]. 

LEMMA 2. Let a and /3 be two nonnegative real numbers such that a < /3. If 
V E W'P (Wbh), 1 < p < X, there exists a positive constant C, independent of h, such 
that for any real number r, a < r < /3, 

||1)||r p h < C111)11a'Psh111)1'fl'peh1 

with Mu = (r- a)/(/3- a). 

Proof. Since the statement is true for a = 0 [6], we shall assume that a > 0. Let 
w = I_,hbv. It follows that 

IIWI|f3-aph = I1vI|| p,h and IIWI|r-ap,h = I1vIlrph- 
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Moreover, 

IIWIrIasph < CIWII'ph |W|-a,p,h 

and the desired inequality follows immediately. 
Consider the finite difference scheme 

(3) - 'hZ = V1V1'11 + V2V2712, X E- Ch, 

(4) z(x) = O x E Yh, 

with qj defined on wh U -Yr and equal to zero on -y, j = 1,2. 
An easy argument based on the discrete multiplicator techniques [6] shows that 

(5) llZll2,ph < C(||7lVl'1711fph + ||V2V271121ph) 

(6) IIZII1,p h < C( [V1q1j|ph + |[v 212|p,h), 

(7) 1Z1 ph < C(11'qlllpsh + 1171p h), 

with a positive constant C, independent of z and h. 
Let us suppose that the solution u of boundary value problem (1), (2) belongs to 

Ws P(Q), s > 2/p, 1 < p < ox. By Sobolev's imbedding theorem [8], u is continuous 
on Q U aQ and 

T20 a2U(x) = 1v,1u(x), XE Wh, 

(T2 aU) (x) = V2V2U(x), x E h - 

Therefore, 

(8) V1V1TW2u + V2V2T20u = -(T22f )(x), x eCh 

(9) U(X) = 0, X E Yh- 

Thus, if the solution of boundary value problem (1), (2) belongs to WsP(Q), 
s > 2/p, 1 < p < ox, we may associate with (1), (2) the finite difference scheme 

(10) AhV (T22f )(x), X Eh, 

(11) V(x) = 0 X E Yh- 

Error estimates will be given in Section 5. 
Let us turn to the case when u, the solution of boundary value problem (1), (2), 

belongs to WsP(Q), 0 < s < 1 + l/p, 1 <p < ox. Define 

WS P(u) - Ws P(02), 0 < S < l/p, 1 < p < x, 
({w: wE WsP(Q), w = 0 on aQ}, i/p <s < 1 + l/p, 1 <p < ox 

and observe that u E WsP(Q), 0 < s < 1 + l/p, 1 < p < ox. Let Qi* = (-sr,2sr) 

x (-nr, 2g). The extension of u by 0 outside Q is a continuous mapping of Ws P(Q) 

into Ws P(Q*), 0 < s < 1 + i/p, s = l/p, 1 < p < ox [5], [8]. Hence, 

u u * = odd extension of u 

is a continuous mapping of WsP(Q) into WsP(Q*), 0 < s < 1 + l/p, s = l/p, 

1 < p < 00. 
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It is obvious that 

(T11u*)(x) = 0, X E Yh, 

(T31U*)(x) = 0, x e 71 

(TU3u*)(x) = 0, x E y2 

We introduced * E 29'(Q*) by 

1* = 

Whence, 

(12) VIV1TI3 U * + V2V2T31U* = - (T33f *)(X), xG E wh 

(13) (Tllu*)(x) = O, x E Yh- 

Therefore, if the solution of (1), (2) belongs to WsP(Q), 0 < s < 1 + l/p, 
s # l/p, 1 < p < x, we may associate with (1), (2) the finite difference scheme 

(14) Ahv = -(T33f *)(x), X E oh, 

(15) v(x) = xEYh- 

Error estimates will be given in Section 5. 

5. Convergence of Finite Difference Schemes. 

THEOREM 1. Let u be the solution of boundary value problem (1), (2), v the solution of 
the discrete problem (10), (11) and k E {0, 1, 2}. If u E Ws P(i), 2/p < s < k + 2, 
1 < p < ox, the following error estimate holds 

||U - VIlk ph < Ch s|k PusQ, 

with a positive constant C independent of h. Moreover, if s > k then finite difference 
scheme (10), (11) converges in the discrete norm 11 * Ilk p h. 

Proof. (a) Let us suppose first that k = 2. By (8)-(11) it follows that the function 
z = v - u is defined on Ch and satisfies (3), (4) with 1 = u - T2u and 2 = U - 

T20u. Now, qj is defined on the grid th U Y~j and equal to zero on y%, j = 1,2. 
Thanks to inequality (5), it suffices to estimate II Vj1V1jjI Ih, j = 1, 2. We introduce 
the squares 

E(i1, i2) = {x = (x1, x2) e R2: (ij - 1) h < x; < (ij + 1) h, j = 1, 2, 

E = {t= (t1, t2) e R2: _1 < tj < 1,j = 1,2), 

and the affine mapping x = (x1, x2) e E(i1, i2) ' t = (t1, t2)e E? with = ijh + 
tjh, j = 1, 2. Let us set i(t) = u(x(t)). Then 

- u(ilh + h,i2h) - 2u(ilh,i2h) + u(ilh - h,i2h) 

1 02 (S) u(ilh + h, i2h + sh) - 2u(ilh, i2h + sh) + u(ilh - h, i2h + sh) d 

h2(U(1) - 2iU(O,0) + U (-1.0)-f 92(S)(iU(1, - 2iU(0,s) + u0(-1,s)) ds}. 
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Furthermore, Vjvj1qj(ijh, i2h) is a bounded linear functional on WS P(E), s > 2/p, 

with a kernel D P3(E). By Lemma 1, 

|V7l,701(ilh, '2h)| -< h2 iiis9pE 

for 2/p < s < 4. Thus, 

I V1Vi?1(ihh, i2h) - 
- h2 

- 
21p UlspE(i ,i2) 

for 2/p < s < 4. Finally, 

1V1V7171111ph 
< chs-2lul~sps 2/p < s < 4. 

Likewise, 

l'V2V2121p, h < chs-2luls',Q 2/p < s < 4, 

and that completes the proof for k = 2. 

(b) Let k = 1. By (6) it suffices to estimate I[Vj]1jIph, j= 1,2. In the same 

manner as in (a) we conclude that 

V77?11(ilh, i2h) = h {(l ,O) - u(O, O) - 02 (s)(iu(1, s) -u (O, s)) ds} 

is a bounded linear functional on WsP(E), s > 2/p, with a kernel D P2(E). 

Therefore, 

JPV70111lp~h < chS-1 lUlsPQ. 2 /p < s < 3, 

and, similarly, 

1P727q11lp h < Ch S-1 lUlsPQ. 2 /p < s -<- 3. 

That completes the proof for k = 1. 
(c) Finally, let k = 0. Let us estimate IIhjllp h'j = 1, 2. Since 

71(ilh, i2h) = iu(O,O) f 2(s)i(0, s) ds 

is a bounded linear functional on Ws P(E), s > 2/p, with a kernel D P'(E), thanks 

to Lemma 1, 

11'q111psh < chsjujs,p,Q, 2 /p < s < 2, 

and, similarly, 

11'q211p h -<- chsjujsp,, 2 /p < s < 2. 

By (7) we obtain the desired error estimate. 
Lemma 2 enables us to derive scales of error estimates. 

THEOREM 2. Let u be the solution of boundary value& problem (1), (2) and v the 

solution of discrete problem (10), (11). If u E Ws P(Q), 2/p < s < 2 and 0 < r < 2, or 

2/p < s < 3 and 1 < r < 2, 1 < p < ox, the following error estimate holds 

||U 
- Vlrlph < Ch s|Ul|pQ. 

with a positive constant C independent of h. Moreover, if s > r then finite difference 

scheme (10), (11) converges in the discrete norm 11 I 11rph. 
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Proof. Let us suppose that u belongs to Ws P(Q), 2/p < s < 2, 1 < p < so and 
0 < r < 2. We apply Lemma 2 with a = 0, /3 = 2 and Theorem 1 to derive the 
desired estimate. 

Likewise, if u belongs to WsP(Q), 2/p <s < 3, 1 <p < o and 1 < r < 2, set 
a = 1 and /3 = 2 to conclude the estimate. 

Let us turn to finite difference scheme (14), (15). 

THEOREM 3. Let u be the solution of boundary value problem (1), (2), v the solution of 
discrete problem (14), (15), and k E {0, 1}. If u E WsP(Q), 0 < s < 1 + l/p, s # 

l/p, 1 <p < oo, then 

IT11U - VIlk p,h < Chs-k u|spQ. 

with a positive constant C independent of h. Moreover, if s > k, then finite difference 
scheme (14), (15) converges in the discrete norm 11 * 11k p h. 

Proof. (a) Let k = 1. By (12)-(15) it follows that the function z = v - T1lu*, 
defined on coh satisfies (3), (4) with 71, = T11u* - T31u* and 2 = T1ju* - T3u*. 
The function n is defined on X0h U Yl and equal to zero on ygj = 1, 2. We define 

E(ij, 
i2) = {X = (X1, X2) E R2: (ij -)h < Xj < (ij + 3)hj = 

1,2), 

E={t=(t1, t2) E- R:- , tj < 3, j = 1, 2} 

and the affine mapping x = (x1, x2) G E(i1, i2) - t = (t1, t2) e E with X = i h + 

tjh,j = 1, 2. Let iU(t) = u*(x(t)).Then 

V717j1(ilh, i2h) = ( {f'/2 172_( (sI + 1, S2) - ( SI s I 2)) ds ds2 

f2 f32 03(S1)(iU(S1 + 1, S2) - Ui(s1 52)) dS1 dS2) 
-1/2 -3/2 

is a bounded linear functional on Ws P(E), 0 < s < 1 + 1/p, s # 1/p with a kernel 
DP2(E).ByLemmal, 

V?1l (ilh ,i2h) I < h |U|5PE, O < s < 1 + 1/p , s /p . 

Thus, 

IVjrlj(ijh, i2h) s -hs-2sPpu*iE(il i2) 

< -h /uIspE(ilj,2)nQ9 0 < s < 1 + l/p, s # 1/p, 

since the extension u E Ws P(Q) u* E Ws P(Q*) is continuous for 0 < s < 1 + 
/p, s /p, 1 <p < . Finally, 

['Vlqlllph < ChS-1IuLPQ 0 < s < 1 + l/p,s S I/p. 

Similarly, 

II 'V72q2lph < ChS-lIuIsSpQ, 0 < s < 1 + l/p, s I i/p. 

By (6) we conclude the desired estimate. 
(b) For k = 0 we apply the same technique as in (a). 
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We make use of Theorem 3 and Lemma 2 with a = 0, /3 = 1 to prove the 
following theorem. 

THEOREM 4. Let u be the solution of boundary value problem (1), (2) and v the 
solution of discrete problem (14), (15). If u E Ws P(Q), 0 < s < 1 + 1/p, s # 1/p, 
1 <p < x andO < r < 1, then 

IT11U - 
Vlr p h < Chsr~uspQ, 

with a positive constant C independent of h. Moreover, if s > r, then finite difference 
scheme (14), (15) converges in the discrete norm 11 * llr p h. 

Remark 7. If i/p < s < 1 + l/p, then f E Ws-2,p(Q) implies u E Ws P(Q) [8]. 

Furthermore, if 0 < s < i/p then f E sS2sP(Q) implies u E Ws P(Q) [5], [8]. Since 
Au* = (Au)* for u E WsP(Q), 0 < s < 1 + l/p, T33f* may be calculated fromf. 
Therefore finite difference scheme (14), (15) is applicable. 
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